Advertisements
Advertisements
प्रश्न
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
उत्तर
\[\text{ Let } x = 2\]
\[\text{ We know }:\]
\[2>1 \text{ and } 2<3\]
\[\therefore x>1 \text{ and } x<3\]
\[\left| x - 1 \right| = x - 1 \text{ and } \left| x - 3 \right| = - \left( x - 3 \right) = - x + 3\]
\[f\left( x \right) = \left| x - 1 \right| + \left| x - 3 \right| = x - 1 - x + 3 = 2\]
\[f'\left( x \right) = 0\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 - 1}{x}\]
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
e3x
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
xn loga x
(x3 + x2 + 1) sin x
x2 sin x log x
(1 − 2 tan x) (5 + 4 sin x)
logx2 x
x3 ex cos x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.