हिंदी

Write the Value of the Derivative of F (X) = |X − 1| + |X − 3| at X = 2. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.

उत्तर

\[\text{ Let } x = 2\]
\[\text{ We know }:\]
\[2>1 \text{ and } 2<3\]
\[\therefore x>1 \text{ and } x<3\]
\[\left| x - 1 \right| = x - 1 \text{ and } \left| x - 3 \right| = - \left( x - 3 \right) = - x + 3\]
\[f\left( x \right) = \left| x - 1 \right| + \left| x - 3 \right| = x - 1 - x + 3 = 2\]
\[f'\left( x \right) = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.6 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.6 | Q 8 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{x^2 - 1}{x}\]


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

e3x


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


xn loga 


(x3 + x2 + 1) sin 


x2 sin x log 


(1 − 2 tan x) (5 + 4 sin x)


logx2 x


x3 ex cos 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{{10}^x}{\sin x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{x}{\sin^n x}\]


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×