Advertisements
Advertisements
प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
उत्तर
The given function is
`f(x) = x^100/100 + x^99/99 + ....... + x^2/2 + x + 1`
∴ `d/(dx) f(x) = [(x^100)/100 + (x^99)/99 + .... + (x^2)/2 + x + 1]`
`d/(dx) f(x) = d/(dx)(x^100/100) + d/(dx)(x^99/99) + ... + d/(dx) (x^2/2) + d/(dx)(x) + d/(dx)(1)`
On using theorem `d/(dx)(x^n)` = `nx^(n - 1)`, we obtain
`d/(dx) f(x)` = `(100x^99)/100 + (99^98)/99 + ... + (2x)/2 + 1 + 0`
= x99 + x98 + ..... + x + 1
∴ f'(x) = `x^99 + x^98 + ..... + x + 1`
At x = 0,
f'(0) = 1
At x = 1,
f'(1) = `1^99 + 1^98 + ... + 1 + 1 = [1 + 1 + ... + 1 + 1]_(100 "terms")` = 1 × 100 = 100
Thus, f'(1) = 100 × f'(0)
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 - 1}{x}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
x sin x
Differentiate of the following from first principle:
sin (2x − 3)
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{2 x^2 + 3x + 4}{x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x5 ex + x6 log x
(1 +x2) cos x
x3 ex cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x4 (5 sin x − 3 cos x)
(2x2 − 3) sin x
x−4 (3 − 4x−5)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]