हिंदी

For the function f(x) = x100100+x9999+...+x22+x+1 Prove that f'(1) = 100 f'(0) - Mathematics

Advertisements
Advertisements

प्रश्न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)

योग

उत्तर

The given function is

`f(x) = x^100/100 + x^99/99 + ....... + x^2/2 + x + 1`

∴ `d/(dx) f(x) = [(x^100)/100 + (x^99)/99 + .... + (x^2)/2 + x + 1]`

`d/(dx) f(x) = d/(dx)(x^100/100) + d/(dx)(x^99/99) + ... + d/(dx) (x^2/2) + d/(dx)(x) + d/(dx)(1)`

On using theorem `d/(dx)(x^n)` = `nx^(n - 1)`, we obtain

`d/(dx) f(x)` = `(100x^99)/100 + (99^98)/99 + ... + (2x)/2 + 1 + 0`

= x99 + x98 + ..... + x + 1

∴ f'(x) = `x^99 + x^98 + ..... + x + 1`

At x = 0,

f'(0) = 1

At x = 1,

f'(1) = `1^99 + 1^98 + ... + 1 + 1 = [1 + 1 + ... + 1 + 1]_(100 "terms")` = 1 × 100 = 100

Thus, f'(1) = 100 × f'(0)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise 13.2 [पृष्ठ ३१२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise 13.2 | Q 5 | पृष्ठ ३१२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of 99x at x = 100.


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x^2 - 1}{x}\]


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

 x sin x


Differentiate  of the following from first principle:

sin (2x − 3)


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x5 ex + x6 log 


(1 +x2) cos x


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (5 sin x − 3 cos x)


(2x2 − 3) sin 


x4 (3 − 4x−5)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{x}{\sin^n x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×