Advertisements
Advertisements
प्रश्न
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
विकल्प
\[- \frac{4x}{\left( x^2 - 1 \right)^2}\]
\[- \frac{4x}{x^2 - 1}\]
\[\frac{1 - x^2}{4x}\]
\[\frac{4x}{x^2 - 1}\]
उत्तर
\[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\]
\[ = \frac{x^2 + 1}{x^2 - 1}\]
Differentiating both sides with respect to x, we get
\[\frac{dy}{dx} = \frac{\left( x^2 - 1 \right) \times \frac{d}{dx}\left( x^2 + 1 \right) - \left( x^2 + 1 \right) \times \frac{d}{dx}\left( x^2 - 1 \right)}{\left( x^2 - 1 \right)^2} \left( \text{ Quotient rule } \right)\]
\[ = \frac{\left( x^2 - 1 \right) \times \left( 2x + 0 \right) - \left( x^2 + 1 \right) \times \left( 2x - 0 \right)}{\left( x^2 - 1 \right)^2}\]
\[ = \frac{2 x^3 - 2x - 2 x^3 - 2x}{\left( x^2 - 1 \right)^2}\]
\[ = \frac{- 4x}{\left( x^2 - 1 \right)^2}\]
Hence, the correct answer is option (a).
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2x - 3/4`
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of the following function at the indicated point:
\[\frac{x + 1}{x + 2}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
\[\cos \sqrt{x}\]
x4 − 2 sin x + 3 cos x
log3 x + 3 loge x + 2 tan x
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
x5 ex + x6 log x
(x sin x + cos x) (x cos x − sin x)
(1 − 2 tan x) (5 + 4 sin x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]