Advertisements
Advertisements
प्रश्न
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
उत्तर
\[\frac{dy}{dx} = \frac{d}{dx} \left( \sin \frac{x}{2} + \cos \frac{x}{2} \right)^2 \]
\[ = \frac{d}{dx}\left( \sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2 \sin \frac{x}{2}\cos \frac{x}{2} \right)\]
\[ = \frac{d}{dx}\left( 1 + \sin x \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( \sin x \right)\]
\[ = 0 + \cos x\]
\[ = \cos x\]
\[\frac{dy}{dx} at x =\frac{\pi}{6}= cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2x - 3/4`
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
(2x2 + 1) (3x + 2)
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
x3 sin x
(x3 + x2 + 1) sin x
\[e^x \log \sqrt{x} \tan x\]
x4 (5 sin x − 3 cos x)
\[\frac{x}{1 + \tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{x}{\sin^n x}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of x2 cosx.
Find the derivative of f(x) = tan(ax + b), by first principle.