हिंदी

If Y = ( Sin X 2 + Cos X 2 ) 2 , Find D Y D X a T X = π 6 . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]

उत्तर

\[\frac{dy}{dx} = \frac{d}{dx} \left( \sin \frac{x}{2} + \cos \frac{x}{2} \right)^2 \]
\[ = \frac{d}{dx}\left( \sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2 \sin \frac{x}{2}\cos \frac{x}{2} \right)\]
\[ = \frac{d}{dx}\left( 1 + \sin x \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( \sin x \right)\]
\[ = 0 + \cos x\]
\[ = \cos x\]
\[\frac{dy}{dx} at x =\frac{\pi}{6}= cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.3 | Q 19 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of 99x at x = 100.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2x - 3/4`


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{2}{x}\]


k xn


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle: 

− x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


(2x2 + 1) (3x + 2) 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


x3 sin 


(x3 + x2 + 1) sin 


\[e^x \log \sqrt{x} \tan x\] 


x4 (5 sin x − 3 cos x)


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{x}{\sin^n x}\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of x2 cosx.


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×