Advertisements
Advertisements
प्रश्न
\[\tan \sqrt{x}\]
उत्तर
\[Let f(x) = \tan\sqrt{x}\]
\[\text{ Thus, we have }: \]
\[(x + h) = \tan\sqrt{x + h}\]
\[\frac{d}{dx}(f(x)) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan\sqrt{x + h} - \tan\sqrt{x}}{h}\]
\[ = \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{h \cos\sqrt{x + h} \cos \sqrt{x}} \left[ \because \tan A - \tan B = \frac{\sin(A - B)}{\cos A \cos B} \right] \]
\[ = \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{\left( x + h - x \right) \cos\sqrt{x + h} \cos \sqrt{x}} \]
\[ = \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)\left( \sqrt{x + h} - \sqrt{x} \right)\cos\sqrt{x + h} \cos \sqrt{x}}\]
\[ = \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)} . \lim_{h \to 0} \frac{1}{\left( \sqrt{x + h} + \sqrt{x} \right)\cos\sqrt{x + h}\cos\sqrt{x}} \left[ \because \lim_{h \to 0} \frac{\sin\left( \sqrt{x + h} - \sqrt{x} \right)}{\sqrt{x + h} - \sqrt{x}} = 1 \right]\]
\[ = 1 \times \frac{1}{2\sqrt{x}\cos\sqrt{x}\cos\sqrt{x}}\]
\[ = \frac{1}{2\sqrt{x}} \sec^2 \sqrt{x}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = 99x at x = 100
\[\frac{1}{x^3}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan 2x
\[\sqrt{\tan x}\]
\[\sin \sqrt{2x}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
x2 ex log x
xn loga x
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(x sin x + cos x ) (ex + x2 log x)
(2x2 − 3) sin x
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
(ax + b)n (cx + d)n
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]