Advertisements
Advertisements
प्रश्न
\[\sqrt{\tan x}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{\tan\left( x + h \right)} - \sqrt{\tan x}}{h} \times \frac{\sqrt{\tan\left( x + h \right)} + \sqrt{\tan x}}{\sqrt{\tan\left( x + h \right)} + \sqrt{\tan x}}\]
\[ = \lim_{h \to 0} \frac{\tan\left( x + h \right) - \tan x}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right)}\]
\[ = \lim_{h \to 0} \frac{\frac{\sin \left( x + h \right)}{\cos \left( x + h \right)} - \frac{\sin x}{\cos x}}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right)}\]
\[ = \lim_{h \to 0} \frac{\sin \left( x + h \right) \cos x - \cos(x + h) \sin x}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right) \cos \left( x + h \right) \cos x}\]
\[ = \lim_{h \to 0} \frac{\sin h}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right) \cos \left( x + h \right) \cos x} \]
\[ = \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right) \cos \left( x + h \right) \cos x}\]
\[ = \left( 1 \right)\frac{1}{2 \sqrt{\tan x} \cos^2 x}\]
\[ = \frac{\sec^2 x}{2 \sqrt{\tan x}}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = 99x at x = 100
\[\frac{1}{x^3}\]
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
\[\sin \sqrt{2x}\]
x4 − 2 sin x + 3 cos x
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 sin x
(x3 + x2 + 1) sin x
sin x cos x
x5 ex + x6 log x
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
x4 (5 sin x − 3 cos x)
x5 (3 − 6x−9)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.