हिंदी

Let f(x) = x – [x]; ∈ R, then f'(12) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.

विकल्प

  • `3/2`

  • 1

  • 0

  • –1

MCQ
रिक्त स्थान भरें

उत्तर

Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is 1.

Explanation:

Given f(x) = x – [x]

We have to first check for differentiability of f(x) at x = `1/2`

∴ Lf'`(1/2)` = L.H.D

= `lim_(h -> 0) (f[1/2 - h] - f[1/2])/(-h)`

= `lim_(h -> 0) ((1/2 - h) - [1/2 - h] - 1/2 + [1/2])/(-h)`

= `lim_(h -> 0) (1/2 - h - 0 - 1/2 + 0)/(-h)`

= `(-h)/(-h)`

= 1

Rf'`(1/2)` = R.H.D

= `lim_(h -> 0) (f(1/2 + h) - f(1/2))/h`

= `lim_(h -> 0) ((1/2 + h) - [1/2 + h] - 1/2 + [1/2])/h`

= `lim_(h -> 0) (1/2 + h - 1 - 1/2 + 1)/h`

= `h/h`

= 1

Since L.H.D = R.H.D

∴ f'`(1/2)` = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 67 | पृष्ठ २४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


k xn


Differentiate  of the following from first principle:

 eax + b


x ex


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[3^{x^2}\]


 tan 2


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


2 sec x + 3 cot x − 4 tan x


sin x cos x


(1 +x2) cos x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b) (a + d)2


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×