Advertisements
Advertisements
प्रश्न
Find the derivative of x2 – 2 at x = 10.
उत्तर
= `lim_(h → 0)(f(a + h) - f(a))/h`
∴ Derivative of x2 − 2 at x = 10
= `lim_(h → 0) ([(10 + h)^2 - 2]- (10^2 - 2))/h`
= `lim_(h → 0) (100 + 20h + h^2 - 2 - 100 + 2)/h`
= `lim_(h → 0) (20h + h^2)/h`
= `lim_(h → 0) (20 + h)`
= 20
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of f (x) = 99x at x = 100
k xn
x2 + x + 3
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan (2x + 1)
\[\tan \sqrt{x}\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
x3 sin x
(x3 + x2 + 1) sin x
logx2 x
\[e^x \log \sqrt{x} \tan x\]
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b)n (cx + d)n
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.
`(a + b sin x)/(c + d cos x)`
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.