हिंदी

Differentiate Each of the Following Functions by the Product Rule and the Other Method and Verify that Answer from Both the Methods is the Same. (3 Sec X − 4 Cosec X) (−2 Sin X + 5 Cos X) - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)

उत्तर

\[ {\text{ Product rule } (1}^{st} \text{ method }):\]
\[\text{ Let } u = 3 \sec x - 4 \cos ec x; v = - 2 \sin x + 5 \cos x\]
\[\text{ Then }, u' = 3 \sec x \tan x + 4 cos ec x \cot x; v' = - 2 \cos x - 5 \sin x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ \left( 3 sec x - 4 \cos ec x \right)\left( - 2 \sin x + 5 \cos x \right) \right] = \left( 3 sec x - 4 \cosec x \right)\left( - 2 \cos x - 5 \sin x \right) + \left( - 2 \sin x + 5 \cos x \right)\left( 3 \sec x \tan x + 4 \cosec x cot x \right)\]
\[ = - 6 + 15 \tan x + 8 \cot x + 20 - 6 \tan^2 x - 8 cot x - 15 \tan x + 20 \cot^2 x\]
\[ = - 6 + 20 - 6\left( \sec^2 x - 1 \right) + 20 \left( {cosec}^2 x - 1 \right)\]
\[ = - 6 + 20 - 6 \sec^2 x + 6 + 20 {cosec}^2 x - 20\]
\[ = - 6 \sec^2 x + 20 \cos e c^2 x\]
\[ 2^{nd} method:\]
\[\frac{d}{dx}\left[ \left( 3 sec x - 4 \cos ec x \right)\left( - 2 \sin x + 5 \cos x \right) \right] = \frac{d}{dx}\left( - 6 \sec x \sin x + 15 \sec x \cos x + 8 \cos ec x \sin x - 20 \cos ec x \cos x \right)\]
\[ = \frac{d}{dx}\left( - 6 \frac{\sin x}{\cos x} + 15\frac{\cos x}{\cos x} + 8 \frac{\sin x}{\sin x} - 20 \frac{\cos x}{\sin x} \right)\]
\[ = \frac{d}{dx}\left( - 6 \tan x + 15 + 8 - 20 \cot x \right)\]
\[ = \frac{d}{dx}\left( - 6\tan x - 20 \cot x + 23 \right)\]
\[ = - 6 \sec^2 x + 20 \cos e c^2 x\]
\[\text{ Using both the methods, we get the same answer }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.4 | Q 26.3 | पृष्ठ ३९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{x + 2}{3x + 5}\]


k xn


Differentiate  of the following from first principle:

 x sin x


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan2 


\[\sqrt{\tan x}\]


\[\tan \sqrt{x}\] 


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


x3 sin 


x5 ex + x6 log 


sin2 


(ax + b) (a + d)2


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×