Advertisements
Advertisements
प्रश्न
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
उत्तर
\[ {\text{ Product rule } (1}^{st} \text{ method }):\]
\[\text{ Let } u = 3 \sec x - 4 \cos ec x; v = - 2 \sin x + 5 \cos x\]
\[\text{ Then }, u' = 3 \sec x \tan x + 4 cos ec x \cot x; v' = - 2 \cos x - 5 \sin x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ \left( 3 sec x - 4 \cos ec x \right)\left( - 2 \sin x + 5 \cos x \right) \right] = \left( 3 sec x - 4 \cosec x \right)\left( - 2 \cos x - 5 \sin x \right) + \left( - 2 \sin x + 5 \cos x \right)\left( 3 \sec x \tan x + 4 \cosec x cot x \right)\]
\[ = - 6 + 15 \tan x + 8 \cot x + 20 - 6 \tan^2 x - 8 cot x - 15 \tan x + 20 \cot^2 x\]
\[ = - 6 + 20 - 6\left( \sec^2 x - 1 \right) + 20 \left( {cosec}^2 x - 1 \right)\]
\[ = - 6 + 20 - 6 \sec^2 x + 6 + 20 {cosec}^2 x - 20\]
\[ = - 6 \sec^2 x + 20 \cos e c^2 x\]
\[ 2^{nd} method:\]
\[\frac{d}{dx}\left[ \left( 3 sec x - 4 \cos ec x \right)\left( - 2 \sin x + 5 \cos x \right) \right] = \frac{d}{dx}\left( - 6 \sec x \sin x + 15 \sec x \cos x + 8 \cos ec x \sin x - 20 \cos ec x \cos x \right)\]
\[ = \frac{d}{dx}\left( - 6 \frac{\sin x}{\cos x} + 15\frac{\cos x}{\cos x} + 8 \frac{\sin x}{\sin x} - 20 \frac{\cos x}{\sin x} \right)\]
\[ = \frac{d}{dx}\left( - 6 \tan x + 15 + 8 - 20 \cot x \right)\]
\[ = \frac{d}{dx}\left( - 6\tan x - 20 \cot x + 23 \right)\]
\[ = - 6 \sec^2 x + 20 \cos e c^2 x\]
\[\text{ Using both the methods, we get the same answer }.\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{x + 2}{3x + 5}\]
k xn
Differentiate of the following from first principle:
x sin x
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan2 x
\[\sqrt{\tan x}\]
\[\tan \sqrt{x}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
x3 sin x
x5 ex + x6 log x
sin2 x
(ax + b) (a + d)2
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is