हिंदी

Mark the Correct Alternative in of the Following: If F ( X ) = X − 4 2 √ X - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 

विकल्प

  •  \[\frac{5}{4}\] 

  • \[\frac{4}{5}\]

  •  1                 

  •  0

MCQ

उत्तर

\[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
\[ = \frac{1}{2}\sqrt{x} - \frac{2}{\sqrt{x}}\]
\[ = \frac{1}{2} x^\frac{1}{2} - 2 x^{- \frac{1}{2}}\]

Differentiating both sides with respect to x, we get

\[f'\left( x \right) = \frac{1}{2} \times \frac{1}{2} x^\frac{1}{2} - 1 - 2 \times \left( - \frac{1}{2} \right) x^{- \frac{1}{2} - 1} \left[ f\left( x \right) = x^n \Rightarrow f'\left( x \right) = n x^{n - 1} \right]\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{4} x^{- \frac{1}{2}} + x^{- \frac{3}{2}} \]
\[ \therefore f'\left( 1 \right) = \frac{1}{4} \times 1 + 1 = \frac{5}{4}\]

Hence, the correct answer is option (a).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.7 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.7 | Q 2 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x + 1}{x + 2}\]


(x + 2)3


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

e3x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

x2 e


3x + x3 + 33


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


x2 ex log 


xn tan 


(1 +x2) cos x


x−3 (5 + 3x


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


\[\frac{1}{a x^2 + bx + c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of 2x4 + x.


(ax2 + cot x)(p + q cos x)


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×