हिंदी

Differentiate Each of the Following from First Principle: X2 Ex - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following from first principle:

x2 e

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( x^2 e^x \right) = \lim_{h \to 0} \frac{(x + h )^2 e^{(x + h)} - x^2 e^x}{h}\]
\[ = \lim_{h \to 0} \frac{( x^2 + 2xh + h^2 ) e^x e^h - x^2 e^x}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 e^x e^h + 2xh e^x e^h + h^2 e^x e^h - x^2 e^x}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 e^x e^h - x^2 e^x}{h} + \lim_{h \to 0} \frac{2 x h e^x e^h}{h} + \lim_{h \to 0} \frac{h^2 e^x e^h}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 e^x \left( e^h - 1 \right)}{h} + \lim_{h \to 0} 2 x e^x e^h + \lim_{h \to 0} h e^x e^h \]
\[ = x^2 e^x \left( 1 \right) + 2x e^x \left( 1 \right) + 0\]
\[ = x^2 e^x + 2x e^x \]
\[ = \left( x^2 + 2x \right) e^x \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 3.07 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x2 – 2 at x = 10.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (xx at x = 1

 


\[\frac{1}{\sqrt{x}}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


x ex


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


x2 sin x log 


(x sin x + cos x) (x cos x − sin x


sin2 


(2x2 − 3) sin 


(ax + b)n (cx d)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×