हिंदी

X 2 + 1 X + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x^2 + 1}{x + 1}\] 

उत्तर

\[\text{ Let } u = x^2 + 1; v = x + 1\]
\[\text{ The }n, u' = 2x; v' = 1\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x^2 + 1}{x + 1} \right) = \frac{\left( x + 1 \right)2x - \left( x^2 + 1 \right)1}{(x + 1 )^2}\]
\[ = \frac{2 x^2 + 2x - x^2 - 1}{(x + 1 )^2}\]
\[ = \frac{x^2 + 2x - 1}{(x + 1 )^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 1 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x at x = 1.


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{x + 1}{x + 2}\]


Differentiate  of the following from first principle:

e3x


x ex


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


tan (2x + 1) 


\[\sqrt{\tan x}\]


2 sec x + 3 cot x − 4 tan x


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


cos (x + a)


x2 ex log 


(x3 + x2 + 1) sin 


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x5 (3 − 6x−9


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{3^x}{x + \tan x}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of 2x4 + x.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×