हिंदी

Write the Value of D D X ( X | X | ) - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]

उत्तर

\[\text{ Case } 1:\]
\[x > 0\]
\[|x| = x\]
\[\text{ Thus, we have }:\]
\[\frac{d}{dx}\left( x|x| \right) = \frac{d}{dx}\left( x . x \right) = \frac{d}{dx}\left( x^2 \right) = 2x \left( 1 \right)\]
\[\text{ Case } 2:\]
\[x < 0\]
\[|x| = - x\]
\[\text{ Thus, we have }:\]
\[\frac{d}{dx}\left( x|x| \right) = \frac{d}{dx}\left( x . \left( - x \right) \right) = \frac{d}{dx}\left( - x^2 \right) = - 2x \left( 2 \right)\]
\[\text{ From } (1) \text{ and } (2), \text{ we have }:\]
\[\frac{d}{dx}\left( x|x| \right) = \binom{2x, if x > 0}{ - 2x, if x < 0}\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.6 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.6 | Q 5 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x–3 (5 + 3x).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of f (x) = 99x at x = 100 


\[\frac{2}{x}\]


\[\frac{1}{\sqrt{x}}\]


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate  of the following from first principle:

e3x


Differentiate of the following from first principle:

 x cos x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 e


x5 ex + x6 log 


(x sin x + cos x ) (ex + x2 log x


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


(2x2 − 3) sin 


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{1 + 3^x}{1 - 3^x}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×