English

Write the Value of D D X ( X | X | ) - Mathematics

Advertisements
Advertisements

Question

Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]

Solution

\[\text{ Case } 1:\]
\[x > 0\]
\[|x| = x\]
\[\text{ Thus, we have }:\]
\[\frac{d}{dx}\left( x|x| \right) = \frac{d}{dx}\left( x . x \right) = \frac{d}{dx}\left( x^2 \right) = 2x \left( 1 \right)\]
\[\text{ Case } 2:\]
\[x < 0\]
\[|x| = - x\]
\[\text{ Thus, we have }:\]
\[\frac{d}{dx}\left( x|x| \right) = \frac{d}{dx}\left( x . \left( - x \right) \right) = \frac{d}{dx}\left( - x^2 \right) = - 2x \left( 2 \right)\]
\[\text{ From } (1) \text{ and } (2), \text{ we have }:\]
\[\frac{d}{dx}\left( x|x| \right) = \binom{2x, if x > 0}{ - 2x, if x < 0}\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.6 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.6 | Q 5 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of 99x at x = 100.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


\[\frac{x^2 - 1}{x}\]


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


\[\sqrt{\tan x}\]


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


3x + x3 + 33


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

xn tan 


(x3 + x2 + 1) sin 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{p x^2 + qx + r}{ax + b}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×