Advertisements
Advertisements
Question
3x + x3 + 33
Solution
\[\frac{d}{dx}\left( 3^x + x^3 + 3^3 \right)\]
\[ = \frac{d}{dx}\left( 3^x \right) + \frac{d}{dx}\left( x^3 \right) + \frac{d}{dx}\left( 3^3 \right)\]
\[ = 3^x \log 3 + 3 x^2 + 0\]
\[ = 3^x \log 3 + 3 x^2\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x at x = 1.
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = cos x at x = 0
(x2 + 1) (x − 5)
x ex
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
sin x + cos x
tan 2x
\[\sin \sqrt{2x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
(2x2 + 1) (3x + 2)
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
x3 sin x
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to