English

X Ex - Mathematics

Advertisements
Advertisements

Question

x ex

Solution

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( x e^x \right) = \lim_{h \to 0} \frac{(x + h ) e^{(x + h)} - x e^x}{h}\]
\[ = \lim_{h \to 0} \frac{(x + h) e^x e^h - x e^x}{h}\]
\[ = \lim_{h \to 0} \frac{x e^x e^h + h e^x e^h - x e^x}{h}\]
\[ = \lim_{h \to 0} \frac{x e^x e^h - x e^x}{h} + \lim_{h \to 0} \frac{h e^x e^h}{h}\]
\[ = \lim_{h \to 0} \frac{x e^x \left( e^h - 1 \right)}{h} + \lim_{h \to 0} e^x e^h \]
\[ = x e^x \left( 1 \right) + e^x \left( e^0 \right)\]
\[ = x e^x + e^x\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 2.04 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{x + 1}{x + 2}\]


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

 eax + b


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

x2 e


\[\sqrt{\tan x}\]


x4 − 2 sin x + 3 cos x


3x + x3 + 33


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


x3 e


sin x cos x


x5 ex + x6 log 


(x sin x + cos x) (x cos x − sin x


x4 (3 − 4x−5)


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{x}{\sin^n x}\]


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Find the derivative of x2 cosx.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×