Advertisements
Advertisements
Question
x ex
Solution
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( x e^x \right) = \lim_{h \to 0} \frac{(x + h ) e^{(x + h)} - x e^x}{h}\]
\[ = \lim_{h \to 0} \frac{(x + h) e^x e^h - x e^x}{h}\]
\[ = \lim_{h \to 0} \frac{x e^x e^h + h e^x e^h - x e^x}{h}\]
\[ = \lim_{h \to 0} \frac{x e^x e^h - x e^x}{h} + \lim_{h \to 0} \frac{h e^x e^h}{h}\]
\[ = \lim_{h \to 0} \frac{x e^x \left( e^h - 1 \right)}{h} + \lim_{h \to 0} e^x e^h \]
\[ = x e^x \left( 1 \right) + e^x \left( e^0 \right)\]
\[ = x e^x + e^x\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{x + 1}{x + 2}\]
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
eax + b
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
x2 ex
\[\sqrt{\tan x}\]
x4 − 2 sin x + 3 cos x
3x + x3 + 33
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
x3 ex
sin x cos x
x5 ex + x6 log x
(x sin x + cos x) (x cos x − sin x)
x−4 (3 − 4x−5)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Find the derivative of x2 cosx.
`(a + b sin x)/(c + d cos x)`