English

A+bsinxc+dcosx - Mathematics

Advertisements
Advertisements

Question

`(a + b sin x)/(c + d cos x)`

Sum

Solution

`d/(dx) ((a + b sin x)/(c + d cos x))`

= `((c + d cos x) * d/(dx) (a + b sin x) - (a + b sin x) d/(dx) (c + d + cos x))/(c + d cos x)^2`

= `((c + d cos x) (b cos x) - (a + b sin x)(- d sin x))/(c + d cos x)^2`  .....[Using quotient rule]

= `(cb cos x + bd cos^2x + ad sin x + bd sin^2x)/(c + d cos x)^2`

= `(cb cos x + ad sin x + bd (cos^2x + sin^2x))/(c + d cos x)^2`

= `(cb cos x + ad sin x + bd)/(c + d cos x)^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise [Page 241]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise | Q 37 | Page 241

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{x^3}\]


Differentiate  of the following from first principle:

 eax + b


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\tan \sqrt{x}\]


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


(x sin x + cos x ) (ex + x2 log x


(1 +x2) cos x


x3 ex cos 


x4 (5 sin x − 3 cos x)


(2x2 − 3) sin 


(ax + b) (a + d)2


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×