Advertisements
Advertisements
Question
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Solution
`d/dx((ax + b)/(px^2 + qr + r)) = ([d/dx(ax + b)](px^2 + qx + r) - (ax + b) d/dx(px^2 + qx + r))/(px^2 + qx + r)^2`
= `(a.(px^2 + qx + r) - (ax + b). (2px +q))/(px^2 + qx + r)^2`
= `((apx^2 + aqx + ar) - [2apx^2 + (aq + 2bp)x + bq])/((px^2 + qx + r)^2)`
= `(-apx^2 + ar - 2bpx - bq)/((px^2 + qx + r)^2)`
= `(-apx^2 - 2bpx + ar - bq)/((px^2 + qx + r)^2)`
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{1}{x^3}\]
\[\frac{x^2 - 1}{x}\]
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\frac{2 x^2 + 3x + 4}{x}\]
2 sec x + 3 cot x − 4 tan x
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
sin x cos x
(x sin x + cos x ) (ex + x2 log x)
sin2 x
x5 (3 − 6x−9)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
(ax + b)n (cx + d)n
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Find the derivative of 2x4 + x.
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.