Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
उत्तर
`d/dx((ax + b)/(px^2 + qr + r)) = ([d/dx(ax + b)](px^2 + qx + r) - (ax + b) d/dx(px^2 + qx + r))/(px^2 + qx + r)^2`
= `(a.(px^2 + qx + r) - (ax + b). (2px +q))/(px^2 + qx + r)^2`
= `((apx^2 + aqx + ar) - [2apx^2 + (aq + 2bp)x + bq])/((px^2 + qx + r)^2)`
= `(-apx^2 + ar - 2bpx - bq)/((px^2 + qx + r)^2)`
= `(-apx^2 - 2bpx + ar - bq)/((px^2 + qx + r)^2)`
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x at x = 1.
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
x2 + x + 3
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\sin \sqrt{2x}\]
\[\tan \sqrt{x}\]
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
x3 ex
(1 − 2 tan x) (5 + 4 sin x)
sin2 x
x5 (3 − 6x−9)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x}{\sin^n x}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]