मराठी

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ax+bpx2+qx+r - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`

बेरीज

उत्तर

`d/dx((ax + b)/(px^2 + qr + r)) = ([d/dx(ax + b)](px^2 + qx + r) - (ax + b) d/dx(px^2 + qx + r))/(px^2 + qx + r)^2`

= `(a.(px^2 + qx + r) - (ax + b). (2px +q))/(px^2 + qx + r)^2`

= `((apx^2 + aqx + ar) - [2apx^2 + (aq + 2bp)x + bq])/((px^2 + qx + r)^2)`

= `(-apx^2 + ar - 2bpx - bq)/((px^2 + qx + r)^2)`

= `(-apx^2 - 2bpx + ar - bq)/((px^2 + qx + r)^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Miscellaneous Exercise | Q 8 | पृष्ठ ३१७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x at x = 1.


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\sin \sqrt{2x}\]


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


x3 e


(1 − 2 tan x) (5 + 4 sin x)


sin2 


x5 (3 − 6x−9


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x}{\sin^n x}\]


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×