Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
उत्तर
Let f(x) = x + a. Accordingly, f (x + h) = x + h + a
By first principle,
f(x) = `lim_(h->0) (f(x + h) - f(x))/h`
= `lim_(h->0) (x + h + a - x - a)/h`
= `lim_(h->0)(h/h)`
= `lim_(x->0) (1)`
= 1
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of `2x - 3/4`
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\sqrt{\tan x}\]
\[\tan \sqrt{x}\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
x3 ex
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(x sin x + cos x ) (ex + x2 log x)
sin2 x
x4 (5 sin x − 3 cos x)
(ax + b)n (cx + d)n
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of x2 cosx.