Advertisements
Advertisements
प्रश्न
\[\sqrt{\tan x}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{\tan\left( x + h \right)} - \sqrt{\tan x}}{h} \times \frac{\sqrt{\tan\left( x + h \right)} + \sqrt{\tan x}}{\sqrt{\tan\left( x + h \right)} + \sqrt{\tan x}}\]
\[ = \lim_{h \to 0} \frac{\tan\left( x + h \right) - \tan x}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right)}\]
\[ = \lim_{h \to 0} \frac{\frac{\sin \left( x + h \right)}{\cos \left( x + h \right)} - \frac{\sin x}{\cos x}}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right)}\]
\[ = \lim_{h \to 0} \frac{\sin \left( x + h \right) \cos x - \cos(x + h) \sin x}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right) \cos \left( x + h \right) \cos x}\]
\[ = \lim_{h \to 0} \frac{\sin h}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right) \cos \left( x + h \right) \cos x} \]
\[ = \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right) \cos \left( x + h \right) \cos x}\]
\[ = \left( 1 \right)\frac{1}{2 \sqrt{\tan x} \cos^2 x}\]
\[ = \frac{\sec^2 x}{2 \sqrt{\tan x}}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x5 (3 – 6x–9).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 1}{x + 2}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
ex log a + ea long x + ea log a
\[\frac{2 x^2 + 3x + 4}{x}\]
xn tan x
logx2 x
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
(ax + b)n (cx + d)n
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]