English

√ Tan X - Mathematics

Advertisements
Advertisements

Question

\[\sqrt{\tan x}\]

Solution

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{\tan\left( x + h \right)} - \sqrt{\tan x}}{h} \times \frac{\sqrt{\tan\left( x + h \right)} + \sqrt{\tan x}}{\sqrt{\tan\left( x + h \right)} + \sqrt{\tan x}}\]
\[ = \lim_{h \to 0} \frac{\tan\left( x + h \right) - \tan x}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right)}\]
\[ = \lim_{h \to 0} \frac{\frac{\sin \left( x + h \right)}{\cos \left( x + h \right)} - \frac{\sin x}{\cos x}}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right)}\]
\[ = \lim_{h \to 0} \frac{\sin \left( x + h \right) \cos x - \cos(x + h) \sin x}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right) \cos \left( x + h \right) \cos x}\]
\[ = \lim_{h \to 0} \frac{\sin h}{h\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right) \cos \left( x + h \right) \cos x} \]
\[ = \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{\left( \sqrt{\tan\left( x + h \right)} + \sqrt{\tan x} \right) \cos \left( x + h \right) \cos x}\]
\[ = \left( 1 \right)\frac{1}{2 \sqrt{\tan x} \cos^2 x}\]
\[ = \frac{\sec^2 x}{2 \sqrt{\tan x}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 4.4 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{2}{x}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 1}{x + 2}\]


k xn


(x + 2)3


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[3^{x^2}\]


x4 − 2 sin x + 3 cos x


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

\[\frac{2^x \cot x}{\sqrt{x}}\] 


(1 +x2) cos x


sin2 


x4 (5 sin x − 3 cos x)


(ax + b) (a + d)2


(ax + b)n (cx d)


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×