English

2 X Cot X √ X - Mathematics

Advertisements
Advertisements

Question

\[\frac{2^x \cot x}{\sqrt{x}}\] 

Solution

\[\text{ Let } u = 2^x \cot x; v = \sqrt{x}\]
\[\text{ Then }, u' = - 2^x {cosec}^2 x + 2^x \log 2 \cot x; v' = \frac{1}{2\sqrt{x}}\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{2^x cot x}{\sqrt{x}} \right) = \frac{\sqrt{x}\left( - 2^x {cosec}^2 x + 2^x \log 2 \cot x \right) - 2^x \cot x\left( \frac{1}{2\sqrt{x}} \right)}{\left( \sqrt{x} \right)^2}\]
\[ = \frac{\frac{x\left( - 2^x {cosec}^2 x + 2^x \log 2 \cot x \right) - 2^{x - 1} \cot x}{\sqrt{x}}}{x}\]
\[ = \frac{2^x \left( - x {cosec}^2 x + x \cot x \log 2 - \left( \frac{1}{2} \right)\cot x \right)}{x\sqrt{x}}\]
\[ = \frac{2^x \left( - x {cosec}^2 x + x \cot x \log 2 - \left( \frac{1}{2} \right)\cot x \right)}{x^\frac{3}{2}}\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.5 | Q 12 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{x + 1}{x + 2}\]


k xn


 (x2 + 1) (x − 5)


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

x2 e


x4 − 2 sin x + 3 cos x


3x + x3 + 33


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


xn tan 


(x sin x + cos x) (x cos x − sin x


\[e^x \log \sqrt{x} \tan x\] 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x5 (3 − 6x−9


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×