Advertisements
Advertisements
प्रश्न
\[\frac{2^x \cot x}{\sqrt{x}}\]
उत्तर
\[\text{ Let } u = 2^x \cot x; v = \sqrt{x}\]
\[\text{ Then }, u' = - 2^x {cosec}^2 x + 2^x \log 2 \cot x; v' = \frac{1}{2\sqrt{x}}\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{2^x cot x}{\sqrt{x}} \right) = \frac{\sqrt{x}\left( - 2^x {cosec}^2 x + 2^x \log 2 \cot x \right) - 2^x \cot x\left( \frac{1}{2\sqrt{x}} \right)}{\left( \sqrt{x} \right)^2}\]
\[ = \frac{\frac{x\left( - 2^x {cosec}^2 x + 2^x \log 2 \cot x \right) - 2^{x - 1} \cot x}{\sqrt{x}}}{x}\]
\[ = \frac{2^x \left( - x {cosec}^2 x + x \cot x \log 2 - \left( \frac{1}{2} \right)\cot x \right)}{x\sqrt{x}}\]
\[ = \frac{2^x \left( - x {cosec}^2 x + x \cot x \log 2 - \left( \frac{1}{2} \right)\cot x \right)}{x^\frac{3}{2}}\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
\[\frac{2}{x}\]
x2 + x + 3
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\sin \sqrt{2x}\]
x4 − 2 sin x + 3 cos x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
xn tan x
xn loga x
(1 +x2) cos x
sin2 x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{1}{a x^2 + bx + c}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is