मराठी

Sin √ 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sin \sqrt{2x}\]

उत्तर

\[\text{ Let } f(x) = \sin\sqrt{2x} \]
\[\text{ Thus, we have }: \]
\[ f(x + h) = \sin\sqrt{2\left( x + h \right)}\]
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin \sqrt{2x + 2h} - \sin \sqrt{2x}}{h}\]
\[\text{ We know }:\]
\[sin C- sin D=2 sin\left( \frac{C - D}{2} \right)\cos\left( \frac{C + D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \sin\left( \sqrt{2x + 2h} - \sqrt{2x} \right) \cos\left( \sqrt{2x + 2h} - \sqrt{2x} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{2 \times 2 \sin\left( \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2} \right) \cos\left( \frac{\sqrt{2x + 2h} + \sqrt{2x}}{2} \right)}{2h + 2x - 2x}\]
\[ = \lim_{h \to 0} \frac{2 \times 2 \sin\left( \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2} \right) \cos\left( \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2} \right)}{\left( \sqrt{2x + 2h} - \sqrt{2x} \right)\sqrt{2x + 2h} + \sqrt{2x}}\]
\[ = \lim_{h \to 0} \frac{2 \times 2 \sin\left( \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2} \right) \cos\left( \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2} \right)}{2 \times \left( \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2} \right)\left( \sqrt{2x + 2h} + \sqrt{2x} \right)}\]
\[ = \lim_{h \to 0} \frac{\sin\left( \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2} \right)}{\left( \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2} \right)} \lim_{h \to 0} \frac{2\cos \left( \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2} \right)}{\sqrt{2x + 2h} + \sqrt{2x}} \]
\[ = 1 \times \frac{2\cos\sqrt{2x}}{2\sqrt{2x}} \left[ \because \lim_{h \to 0} \frac{\sin\left( \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2} \right)}{\left( \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2} \right)} = 1 \right]\]
\[ = \frac{\cos\sqrt{2x}}{\sqrt{2x}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 5.1 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of 99x at x = 100.


Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x^2 + 1}{x}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate  of the following from first principle:

 x sin x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\cos \sqrt{x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


xn loga 


sin x cos x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b) (a + d)2


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×