Advertisements
Advertisements
प्रश्न
Find the derivative of `2x - 3/4`
उत्तर
Let f(x) = `2x - 3/4`
f'(x) = `d/(dx) (2x - 3/4)`
∴ f'(x) = `2 d/dx (x) + d/dx(-3/4)`
= 2.1 + 0
= 2
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) = tan x at x = 0
\[\frac{2}{x}\]
\[\frac{x + 1}{x + 2}\]
k xn
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
tan2 x
\[\tan \sqrt{x}\]
3x + x3 + 33
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
ex log a + ea long x + ea log a
log3 x + 3 loge x + 2 tan x
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{2 x^2 + 3x + 4}{x}\]
(x sin x + cos x) (x cos x − sin x)
(1 − 2 tan x) (5 + 4 sin x)
x3 ex cos x
(2x2 − 3) sin x
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x + \cos x}{\tan x}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.