मराठी

2 x + 3 x − 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{2x + 3}{x - 2}\] 

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{2\left( x + h \right) + 3}{x + h - 2} - \frac{2x + 3}{x - 2}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)\left( x - 2 \right) - \left( x + h - 2 \right)\left( 2x + 3 \right)}{h\left( x + h - 2 \right)\left( x - 2 \right)}\]
\[ = \lim_{h \to 0} \frac{2 x^2 + 2xh + 3x - 4x - 4h - 6 - 2 x^2 - 2xh + 4x - 3x - 3h + 6}{h\left( x + h - 2 \right)\left( x - 2 \right)}\]
\[ = \lim_{h \to 0} \frac{- 7h}{h\left( x + h - 2 \right)\left( x - 2 \right)}\]
\[ = \lim_{h \to 0} \frac{- 7}{\left( x + h - 2 \right)\left( x - 2 \right)}\]
\[ = \frac{- 7}{\left( x - 2 \right)\left( x - 2 \right)}\]
\[ = \frac{- 7}{\left( x - 2 \right)^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 1.15 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x–3 (5 + 3x).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (xx at x = 1

 


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


k xn


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


x ex


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


 tan 2


(2x2 + 1) (3x + 2) 


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 e


xn tan 


(x sin x + cos x ) (ex + x2 log x


sin2 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


\[\frac{e^x}{1 + x^2}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{x + \cos x}{\tan x}\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of x2 cosx.


Find the derivative of f(x) = tan(ax + b), by first principle.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×