Advertisements
Advertisements
प्रश्न
\[\frac{2x + 3}{x - 2}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{2\left( x + h \right) + 3}{x + h - 2} - \frac{2x + 3}{x - 2}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)\left( x - 2 \right) - \left( x + h - 2 \right)\left( 2x + 3 \right)}{h\left( x + h - 2 \right)\left( x - 2 \right)}\]
\[ = \lim_{h \to 0} \frac{2 x^2 + 2xh + 3x - 4x - 4h - 6 - 2 x^2 - 2xh + 4x - 3x - 3h + 6}{h\left( x + h - 2 \right)\left( x - 2 \right)}\]
\[ = \lim_{h \to 0} \frac{- 7h}{h\left( x + h - 2 \right)\left( x - 2 \right)}\]
\[ = \lim_{h \to 0} \frac{- 7}{\left( x + h - 2 \right)\left( x - 2 \right)}\]
\[ = \frac{- 7}{\left( x - 2 \right)\left( x - 2 \right)}\]
\[ = \frac{- 7}{\left( x - 2 \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–3 (5 + 3x).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
e3x
x ex
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
tan 2x
(2x2 + 1) (3x + 2)
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 ex
xn tan x
(x sin x + cos x ) (ex + x2 log x)
sin2 x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{e^x}{1 + x^2}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{x + \cos x}{\tan x}\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of x2 cosx.
Find the derivative of f(x) = tan(ax + b), by first principle.
`(a + b sin x)/(c + d cos x)`