मराठी

Mark the Correct Alternative in of the Following: If F ( X ) = X 100 + X 99 + . . . + X + 1 Then F ′ ( 1 ) is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 

पर्याय

  • 5050              

  •  5049                 

  • 5051         

  • 50051

MCQ

उत्तर

\[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] 

Differentiating both sides with respect to x, we get \[f'\left( x \right) = \frac{d}{dx}\left( x^{100} + x^{99} + . . . + x + 1 \right)\]
\[ = \frac{d}{dx}\left( x^{100} \right) + \frac{d}{dx}\left( x^{99} \right) + . . . + \frac{d}{dx}\left( x^2 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( 1 \right)\]
\[ = 100 x^{99} + 99 x^{98} + . . . + 2x + 1 + 0 \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right)\]
\[ = 100 x^{99} + 99 x^{98} + . . . + 2x + 1\]

Putting x = 1, we get 

\[f'\left( 1 \right) = 100 + 99 + 98 + . . . + 2 + 1\]
\[ = \frac{100\left( 100 + 1 \right)}{2} \left( S_n = \frac{n\left( n + 1 \right)}{2} \right)\]
\[ = 50 \times 101\]
\[ = 5050\]

Hence, the correct answer is option (a).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.7 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.7 | Q 7 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of (x) = tan x at x = 0 


k xn


(x + 2)3


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 x sin x


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\sin \sqrt{2x}\]


\[\tan \sqrt{x}\]


x4 − 2 sin x + 3 cos x


ex log a + ea long x + ea log a


(2x2 + 1) (3x + 2) 


2 sec x + 3 cot x − 4 tan x


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x2 sin x log 


logx2 x


x4 (5 sin x − 3 cos x)


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×