Advertisements
Advertisements
प्रश्न
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
पर्याय
5050
5049
5051
50051
उत्तर
\[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]
Differentiating both sides with respect to x, we get \[f'\left( x \right) = \frac{d}{dx}\left( x^{100} + x^{99} + . . . + x + 1 \right)\]
\[ = \frac{d}{dx}\left( x^{100} \right) + \frac{d}{dx}\left( x^{99} \right) + . . . + \frac{d}{dx}\left( x^2 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( 1 \right)\]
\[ = 100 x^{99} + 99 x^{98} + . . . + 2x + 1 + 0 \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right)\]
\[ = 100 x^{99} + 99 x^{98} + . . . + 2x + 1\]
Putting x = 1, we get
\[f'\left( 1 \right) = 100 + 99 + 98 + . . . + 2 + 1\]
\[ = \frac{100\left( 100 + 1 \right)}{2} \left( S_n = \frac{n\left( n + 1 \right)}{2} \right)\]
\[ = 50 \times 101\]
\[ = 5050\]
Hence, the correct answer is option (a).
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = tan x at x = 0
k xn
(x + 2)3
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
x sin x
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\sin \sqrt{2x}\]
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
ex log a + ea long x + ea log a
(2x2 + 1) (3x + 2)
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x2 sin x log x
logx2 x
x4 (5 sin x − 3 cos x)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Find the derivative of 2x4 + x.