Advertisements
Advertisements
प्रश्न
Find the derivative of 2x4 + x.
उत्तर
Let y = 2x4 + x
Differentiating both sides with respect to x, we get
`(dy)/(dx) = d/(dx) (2x^4) + d/(dx) (x)`
= `2 xx 4x^(4 - 1) + 1x^0`
= `8x^3 + 1`
Therefore, `d/(dx) (2x^4 + x) = 8x^3 + 1`.
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of `2x - 3/4`
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{x}}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan2 x
tan 2x
\[\sin \sqrt{2x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
2 sec x + 3 cot x − 4 tan x
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
x2 sin x log x
(x sin x + cos x) (x cos x − sin x)
(1 +x2) cos x
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b)n (cx + d)n
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
(ax2 + cot x)(p + q cos x)