Advertisements
Advertisements
प्रश्न
Differentiate each of the following from first principle:
sin x + cos x
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin \left( x + h \right) + cos \left( x + h \right) - \sin x - \cos x}{h}\]
\[ = \lim_{h \to 0} \frac{\sin \left( x + h \right) - \sin x}{h} + \lim_{h \to 0} \frac{\cos \left( x + h \right) - \cos x}{h}\]
\[\text{ We have }:\]
\[sin C-sin D= 2 cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[And, cos C- \cos D = - 2 \sin\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{2x + h}{2} \right) \sin \frac{h}{2}}{h} + \lim_{h \to 0} \frac{- 2 \sin \left( \frac{2x + h}{2} \right) \sin \frac{h}{2}}{h}\]
\[ = 2 \lim_{h \to 0} \cos \left( \frac{2x + h}{2} \right) \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \times \frac{1}{2} - 2 \lim_{h \to 0} \sin \left( \frac{2x + h}{2} \right) \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \times \frac{1}{2}\]
\[ = 2 \cos x \times \frac{1}{2} - 2 \sin x \times \frac{1}{2}\]
\[ = \cos x - \sin x\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
(x + 2)3
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
x4 − 2 sin x + 3 cos x
ex log a + ea long x + ea log a
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
\[e^x \log \sqrt{x} \tan x\]
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
(ax2 + cot x)(p + q cos x)