मराठी

Differentiate Each of the Following from First Principle: X2 Ex - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following from first principle:

x2 e

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( x^2 e^x \right) = \lim_{h \to 0} \frac{(x + h )^2 e^{(x + h)} - x^2 e^x}{h}\]
\[ = \lim_{h \to 0} \frac{( x^2 + 2xh + h^2 ) e^x e^h - x^2 e^x}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 e^x e^h + 2xh e^x e^h + h^2 e^x e^h - x^2 e^x}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 e^x e^h - x^2 e^x}{h} + \lim_{h \to 0} \frac{2 x h e^x e^h}{h} + \lim_{h \to 0} \frac{h^2 e^x e^h}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 e^x \left( e^h - 1 \right)}{h} + \lim_{h \to 0} 2 x e^x e^h + \lim_{h \to 0} h e^x e^h \]
\[ = x^2 e^x \left( 1 \right) + 2x e^x \left( 1 \right) + 0\]
\[ = x^2 e^x + 2x e^x \]
\[ = \left( x^2 + 2x \right) e^x \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 3.07 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


\[\frac{x^2 + 1}{x}\]


 (x2 + 1) (x − 5)


x ex


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\sqrt{\tan x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


2 sec x + 3 cot x − 4 tan x


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


x2 ex log 


(x sin x + cos x) (x cos x − sin x


x5 (3 − 6x−9


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x^5 - \cos x}{\sin x}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×