मराठी

Differentiate of the Following from First Principle: − X - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate  of the following from first principle: 

− x

उत्तर

\[\frac{d}{dx}\left( f\left( x \right) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( - x \right) = \lim_{h \to 0} \frac{- \left( x + h \right) - \left( - x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{- x - h + x}{h}\]
\[ = \lim_{h \to 0} \frac{- h}{h}\]
\[ = \lim_{h \to 0} - 1\]
\[ = - 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 2.05 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `2x - 3/4`


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (xx at x = 1

 


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{1}{x^3}\]


\[\frac{x^2 - 1}{x}\]


Differentiate  of the following from first principle:

 eax + b


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


tan (2x + 1) 


 tan 2


\[\sin \sqrt{2x}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


x2 ex log 


sin x cos x


(x sin x + cos x) (x cos x − sin x


(1 − 2 tan x) (5 + 4 sin x)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b) (a + d)2


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{x}{\sin^n x}\]


\[\frac{1}{a x^2 + bx + c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Find the derivative of x2 cosx.


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×