मराठी

1 X 3 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{1}{x^3}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{1}{(x + h )^3} - \frac{1}{x^3}}{h}\]
\[ = \lim_{h \to 0} \frac{x^3 - (x + h )^3}{h(x + h )^3 x^3}\]
\[ = \lim_{h \to 0} \frac{x^3 - x^3 - 3 x^2 h - 3x h^2 - h^3}{h(x + h )^3 x^3}\]
\[ = \lim_{h \to 0} \frac{- 3 x^2 h - 3x h^2 - h^3}{h(x + h )^3 x^3}\]
\[ = \lim_{h \to 0} \frac{h\left( - 3 x^2 - 3xh - h^2 \right)}{h(x + h )^3 x^3}\]
\[ = \lim_{h \to 0} \frac{\left( - 3 x^2 - 3xh - h^2 \right)}{(x + h )^3 x^3}\]
\[ = \frac{- 3 x^2}{x^6}\]
\[ = \frac{- 3}{x^4}\]
\[ = - 3 x^{- 4} \]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 1.03 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `2x - 3/4`


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

 x2 sin x


x4 − 2 sin x + 3 cos x


 log3 x + 3 loge x + 2 tan x


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


2 sec x + 3 cot x − 4 tan x


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 sin 


x3 e


(x3 + x2 + 1) sin 


x2 sin x log 


logx2 x


\[\frac{{10}^x}{\sin x}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×