Advertisements
Advertisements
प्रश्न
\[\frac{1}{x^3}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{1}{(x + h )^3} - \frac{1}{x^3}}{h}\]
\[ = \lim_{h \to 0} \frac{x^3 - (x + h )^3}{h(x + h )^3 x^3}\]
\[ = \lim_{h \to 0} \frac{x^3 - x^3 - 3 x^2 h - 3x h^2 - h^3}{h(x + h )^3 x^3}\]
\[ = \lim_{h \to 0} \frac{- 3 x^2 h - 3x h^2 - h^3}{h(x + h )^3 x^3}\]
\[ = \lim_{h \to 0} \frac{h\left( - 3 x^2 - 3xh - h^2 \right)}{h(x + h )^3 x^3}\]
\[ = \lim_{h \to 0} \frac{\left( - 3 x^2 - 3xh - h^2 \right)}{(x + h )^3 x^3}\]
\[ = \frac{- 3 x^2}{x^6}\]
\[ = \frac{- 3}{x^4}\]
\[ = - 3 x^{- 4} \]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2x - 3/4`
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
x2 + x + 3
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
x2 sin x
x4 − 2 sin x + 3 cos x
log3 x + 3 loge x + 2 tan x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{2 x^2 + 3x + 4}{x}\]
2 sec x + 3 cot x − 4 tan x
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 sin x
x3 ex
(x3 + x2 + 1) sin x
x2 sin x log x
logx2 x
\[\frac{{10}^x}{\sin x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Find the derivative of x2 cosx.