Advertisements
Advertisements
प्रश्न
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
उत्तर
\[\frac{d}{dx}\left[ \left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right) \right]\]
\[ = \frac{d}{dx}\left[ \left( x + x^{- 1} \right)\left( x^\frac{1}{2} + x^\frac{- 1}{2} \right) \right]\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} + x^\frac{1}{2} + x^\frac{- 1}{2} + x^\frac{- 3}{2} \right)\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} \right) + \frac{d}{dx}\left( x^\frac{1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 3}{2} \right)\]
\[ = \frac{3}{2} x^\frac{1}{2} + \frac{1}{2} x^\frac{- 1}{2} - \frac{1}{2} x^\frac{- 3}{2} - \frac{3}{2} x^\frac{- 5}{2} \]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of f (x) = cos x at x = 0
\[\frac{x + 1}{x + 2}\]
\[\frac{1}{\sqrt{3 - x}}\]
\[\sqrt{2 x^2 + 1}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan2 x
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
x3 sin x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x2 sin x log x
(x sin x + cos x ) (ex + x2 log x)
\[e^x \log \sqrt{x} \tan x\]
x5 (3 − 6x−9)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b) (a + d)2
(ax + b)n (cx + d)n
\[\frac{x}{1 + \tan x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is