Advertisements
Advertisements
Question
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
Solution
\[\frac{d}{dx}\left[ \left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right) \right]\]
\[ = \frac{d}{dx}\left[ \left( x + x^{- 1} \right)\left( x^\frac{1}{2} + x^\frac{- 1}{2} \right) \right]\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} + x^\frac{1}{2} + x^\frac{- 1}{2} + x^\frac{- 3}{2} \right)\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} \right) + \frac{d}{dx}\left( x^\frac{1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 3}{2} \right)\]
\[ = \frac{3}{2} x^\frac{1}{2} + \frac{1}{2} x^\frac{- 1}{2} - \frac{1}{2} x^\frac{- 3}{2} - \frac{3}{2} x^\frac{- 5}{2} \]
APPEARS IN
RELATED QUESTIONS
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = 99x at x = 100
\[\frac{1}{x^3}\]
\[\frac{x^2 + 1}{x}\]
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
3x + x3 + 33
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
xn tan x
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[e^x \log \sqrt{x} \tan x\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
`(a + b sin x)/(c + d cos x)`