Advertisements
Advertisements
Question
Find the derivative of f (x) = 3x at x = 2
Solution
We have:
\[{f'(2) = \lim}_{h \to 0} \frac{f(2 + h) - f(2)}{h}\]
\[ = \lim_{h \to 0} \frac{3(2 + h) - 3(2)}{h}\]
\[ = \lim_{h \to 0} \frac{6 + 3h - 6}{h}\]
\[ = \lim_{h \to 0} \frac{3h}{h}\]
\[ = 3\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = tan x at x = 0
\[\frac{x^2 - 1}{x}\]
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\sin \sqrt{2x}\]
3x + x3 + 33
ex log a + ea long x + ea log a
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
cos (x + a)
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
sin x cos x
x2 sin x log x
(x sin x + cos x) (x cos x − sin x)
(1 − 2 tan x) (5 + 4 sin x)
\[e^x \log \sqrt{x} \tan x\]
x3 ex cos x
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{x}{\sin^n x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to