English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (ax + b) (cx + d)2 - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2

Sum

Solution

Let f(x) = (ax + b)(cx + d)2

By Leibnitz product rule,

∴ `f'(x) = (ax + b) d/dx (cx + d)^2 + (cx + d)^2 d/dx (ax + d)`

= `(ax + b) d/dx (c^2 x^2 + 2cdx + d^2) + (cx + d)^2 d/dx (ax + b)`

= `(ax + b)[d/dx (c^2x^2) + d/dx (2cdx) + d/dx d^2] + (cx + d)^2 [d/dx ax + d/dx b]`

= (ax + b)(2c2x + 2cd) + (cx + d2)a

= 2c(ax + b) (cx + d) + a(cx + d)2

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 317]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 4 | Page 317

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


(x + 2)3


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate of the following from first principle:

 x cos x


tan2 


\[\tan \sqrt{x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


ex log a + ea long x + ea log a


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x3 sin 


x3 e


xn tan 


\[e^x \log \sqrt{x} \tan x\] 


x3 ex cos 


(ax + b) (a + d)2


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×