Advertisements
Advertisements
Question
Differentiate of the following from first principle:
x cos x
Solution
\[\left( x \right) \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right) \cos \left( x + h \right) - x \cos x}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)\left( \cos x \cos h - \sin x \sin h \right) - x \cos x}{h}\]
\[ = \lim_{h \to 0} \frac{x \cos x \cos h - x \sin x \sin h + h \cos x \cos h - h \sin x \sin h - x \cos x}{h}\]
\[ = \lim_{h \to 0} \frac{x \cos x \cos h - x \cos x - x \sin x \sin h + h \cos x \cos h - h \sin x \sin h}{h}\]
\[ = x \cos x \lim_{h \to 0} \frac{\left( \cos h - 1 \right)}{h} - x \sin x \lim_{h \to 0} \frac{\sin h}{h} + \cos x \lim_{h \to 0} \cos h + \sin x \lim_{h \to 0} \sin h\]
\[ = x \cos x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} - x \sin x \left( 1 \right) + \cos x \left( 1 \right) + \sin x \left( 0 \right)\]
\[ = x\cos x \lim_{h \to 0} \frac{- h}{2} - x \sin x \left( 1 \right) + \cos x \left( 1 \right) + \sin x \left( 0 \right)\]
\[ = - x \cos x \left( 0 \right) - x \sin x + \cos x \]
\[ = - x \sin x + \cos x \]
\[ \]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) = cos x at x = 0
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x + 1}{x + 2}\]
\[\frac{x + 2}{3x + 5}\]
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
tan (2x + 1)
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
(x3 + x2 + 1) sin x
(1 +x2) cos x
x3 ex cos x
(2x2 − 3) sin x
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x}{1 + \tan x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Find the derivative of 2x4 + x.