English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): cosec x cot x - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x

Sum

Solution

Let f(x) = cosec x cot x

By Leibnitz product rule,

f'(x) = cosec x (cot x)' + cot x (cosec x)'      ...(1)

Let f (x) = cot x. Accordingly, f(x + h) = cot (x + h)

By first principle,

Let f1(x) = `lim_(h->0) (f_1(x + h)− f_1(x))/h`

= `lim_(h->0) ((cot (x + h) -cot x)/h)`

= `lim_(h->0) (cos (x + h)/(sin (x + h))-(cos x)/(sin x))`

= `lim_(h->0)1/h[(sin x cos (x + h) - cos x sin (x + h))/(sin x sin (x + h))]`

= `lim_(h->0)1/h[sin (x - h - h)/(sin x sin (x + h))]`

= `1/(sin x) lim_(h->0)1/h[sin (- h)/(sin (x + h))]`

= `1/(sin x) (lim_(h->0) (sin h)/h) (lim_(h->0) 1/(sin (x + h)))`

= `-1/(sin x).1 (1/(sin (x + 0)))`

= `(-1)/(sin^2 x)`

= - cosec2 x

∴ (cot x)' = - cosec2 x       ...(2)

Now, let f2(x) = cosec x. Accordingly, f2(x + h) = cosec(x + h)

By first principle,

f2(x)' = `lim_(h->0) (f_2 (x + h) - f_2 (x))/h`

= `lim_(h->0) 1/h [cosec (x + h) - cosec x]`

= `lim_(h->0)1/h [1/(sin (x + h)) - 1/(sin x)]`

= `lim_(h->0)1/h [(sin x - sin (x + h))/(sin x sin (x + h))]`

= `1/(sin x). lim_(h->0)1/h[(2 cos  ((x + x + h)/2) sin  ((x - x - h)/2))/(sin (x + h))]`

= `1/(sin x). lim_(h->0)1/h [(2 cos  ((2x + h)/2) sin  ((-h)/2))/(sin (x + h))]`

 

= `1/(sin x). lim_(h->0)1/h [(2 cos  ((2x + h)/2) sin  ((-h)/2))/(sin (x + h))]`

= `1/sin x. lim_(h->0) [-sin(h/2)/((h/2)) (cos ((2x +h)/2))/(sin (x + h))]`

= `(-1)/(sin x). lim_(h->0) sin(h/2)/((h/2)) lim_(h->0) (cos  ((2x + h)/2))/(sin (x + h))`

= `(-1)/ (sin x).1 (cos((2x + 0)/2))/(sin (x + 0)`

= `(-1)/(sin x).(cos x)/(sin x)`

= -cosecx . cot x

∴ (cosec x) = -cosec x. cot x      ...(3)

From (1), (2), and (3), we obtain

f'(x) = cosec x(-cosec2x) + cot x (-cosec x cot x)

= -cosec3 x-cot2 x cosec x

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 317]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 15 | Page 317

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x + 2}{3x + 5}\]


 x2 + x + 3


\[\sqrt{2 x^2 + 1}\]


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


 tan 2


\[\sin \sqrt{2x}\]


\[\cos \sqrt{x}\]


ex log a + ea long x + ea log a


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


2 sec x + 3 cot x − 4 tan x


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x2 ex log 


xn loga 


(x3 + x2 + 1) sin 


sin x cos x


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


x3 ex cos 


(2x2 − 3) sin 


(ax + b) (a + d)2


(ax + b)n (cx d)


\[\frac{x}{1 + \tan x}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×