Advertisements
Advertisements
Question
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Solution
Let f(x) = cosec x cot x
By Leibnitz product rule,
f'(x) = cosec x (cot x)' + cot x (cosec x)' ...(1)
Let f (x) = cot x. Accordingly, f(x + h) = cot (x + h)
By first principle,
Let f1(x) = `lim_(h->0) (f_1(x + h)− f_1(x))/h`
= `lim_(h->0) ((cot (x + h) -cot x)/h)`
= `lim_(h->0) (cos (x + h)/(sin (x + h))-(cos x)/(sin x))`
= `lim_(h->0)1/h[(sin x cos (x + h) - cos x sin (x + h))/(sin x sin (x + h))]`
= `lim_(h->0)1/h[sin (x - h - h)/(sin x sin (x + h))]`
= `1/(sin x) lim_(h->0)1/h[sin (- h)/(sin (x + h))]`
= `1/(sin x) (lim_(h->0) (sin h)/h) (lim_(h->0) 1/(sin (x + h)))`
= `-1/(sin x).1 (1/(sin (x + 0)))`
= `(-1)/(sin^2 x)`
= - cosec2 x
∴ (cot x)' = - cosec2 x ...(2)
Now, let f2(x) = cosec x. Accordingly, f2(x + h) = cosec(x + h)
By first principle,
f2(x)' = `lim_(h->0) (f_2 (x + h) - f_2 (x))/h`
= `lim_(h->0) 1/h [cosec (x + h) - cosec x]`
= `lim_(h->0)1/h [1/(sin (x + h)) - 1/(sin x)]`
= `lim_(h->0)1/h [(sin x - sin (x + h))/(sin x sin (x + h))]`
= `1/(sin x). lim_(h->0)1/h[(2 cos ((x + x + h)/2) sin ((x - x - h)/2))/(sin (x + h))]`
= `1/(sin x). lim_(h->0)1/h [(2 cos ((2x + h)/2) sin ((-h)/2))/(sin (x + h))]`
= `1/(sin x). lim_(h->0)1/h [(2 cos ((2x + h)/2) sin ((-h)/2))/(sin (x + h))]`
= `1/sin x. lim_(h->0) [-sin(h/2)/((h/2)) (cos ((2x +h)/2))/(sin (x + h))]`
= `(-1)/(sin x). lim_(h->0) sin(h/2)/((h/2)) lim_(h->0) (cos ((2x + h)/2))/(sin (x + h))`
= `(-1)/ (sin x).1 (cos((2x + 0)/2))/(sin (x + 0)`
= `(-1)/(sin x).(cos x)/(sin x)`
= -cosecx . cot x
∴ (cosec x) = -cosec x. cot x ...(3)
From (1), (2), and (3), we obtain
f'(x) = cosec x(-cosec2x) + cot x (-cosec x cot x)
= -cosec3 x-cot2 x cosec x
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x + 2}{3x + 5}\]
x2 + x + 3
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
tan 2x
\[\sin \sqrt{2x}\]
\[\cos \sqrt{x}\]
ex log a + ea long x + ea log a
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
2 sec x + 3 cot x − 4 tan x
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x2 ex log x
xn loga x
(x3 + x2 + 1) sin x
sin x cos x
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
x3 ex cos x
(2x2 − 3) sin x
(ax + b) (a + d)2
(ax + b)n (cx + d)n
\[\frac{x}{1 + \tan x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Find the derivative of f(x) = tan(ax + b), by first principle.
`(a + b sin x)/(c + d cos x)`