Advertisements
Advertisements
Question
Differentiate of the following from first principle:
x sin x
Solution
\[ = \lim_{h \to 0} \frac{\left( x + h \right) \sin\left( x + h \right) - x \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)\left( \sin x \cos h + \cos x \sin h \right) - x \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h + x \cos x \sin h + h \sin x \cos h + h \cos x \sin h}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h - x \sin x + x \cos x \sin h + h \sin x \cos h + h \cos x \sin h - x \sin x}{h}\]
\[ = x \sin x \lim_{h \to 0} \frac{\left( \cos h - 1 \right)}{h} + x \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} \cos h + \cos x \lim_{h \to 0} \sin h\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + x \cos x \left( 1 \right) + \sin x \left( 1 \right) + \cos x \left( 0 \right)\]
\[ = x \sin x \times \frac{- h}{2} + x \cos x \left( 1 \right) + \sin x \left( 1 \right) + \cos x \left( 0 \right)\]
\[ = - 2x \sin x \left( \frac{1}{2} \right)\left( 0 \right) + x \cos x + \sin x \]
\[ = x \cos x + \sin x \]
\[ \]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x at x = 1.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
\[\frac{2}{x}\]
\[\frac{1}{\sqrt{x}}\]
x2 + x + 3
\[\sin \sqrt{2x}\]
\[\cos \sqrt{x}\]
log3 x + 3 loge x + 2 tan x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 sin x
(x sin x + cos x) (x cos x − sin x)
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{x}{\sin^n x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Find the derivative of 2x4 + x.