English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): x4 (5 sin x – 3 cos x) - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)

Sum

Solution

∵ (uv)' = u'v + uv'

∴ `d/dx[x^4(5 sinx - 3cosx)] = (d/dx x^4)(5sinx - 3cosx) + x^4 d/dx(5 sinx - 3 cosx)`

= 4x3 (5 sin x − 3 cos x) + x4 [5 cos x + 3 sin x]

= 20 x3 sin x - 12x3 cos x + 5x4 cos x + 3x4 sin x

= x3 sin x (20 + 3x) + x3 cos x (5x - 12)

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 318]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 22 | Page 318

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{\sqrt{x}}\]


(x + 2)3


 (x2 + 1) (x − 5)


x ex


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

x2 e


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


 tan 2


 log3 x + 3 loge x + 2 tan x


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


2 sec x + 3 cot x − 4 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


x3 ex cos 


(2x2 − 3) sin 


(ax + b) (a + d)2


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×