Advertisements
Advertisements
Question
Find the derivative of f (x) = cos x at x = 0
Solution
We have:
\[f'(x) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h}\]
\[ = \lim_{h \to 0} \frac{f(h) - f(0)}{h}\]
\[ = \lim_{h \to 0} \frac{\cosh - \cos0}{h}\]
\[ = \lim_{h \to 0} \frac{\cosh - 1}{h}\]
\[ {= \lim}_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{h}\]
\[ {= \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}}}_{} \times \frac{h}{4}\]
\[ = {= \lim_{h \to 0} - 1}_{} \times \frac{h}{2}\]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 2}{3x + 5}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
x cos x
Differentiate of the following from first principle:
sin (2x − 3)
tan2 x
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
ex log a + ea long x + ea log a
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
x3 ex
\[\frac{2^x \cot x}{\sqrt{x}}\]
sin2 x
x3 ex cos x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{e^x}{1 + x^2}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of f(x) = tan(ax + b), by first principle.
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.