English

Find the Derivative of F (X) = Cos X at X = 0 - Mathematics

Advertisements
Advertisements

Question

Find the derivative of f (x) = cos x at x = 0

Solution

We have: 

\[f'(x) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h}\]
\[ = \lim_{h \to 0} \frac{f(h) - f(0)}{h}\]
\[ = \lim_{h \to 0} \frac{\cosh - \cos0}{h}\]
\[ = \lim_{h \to 0} \frac{\cosh - 1}{h}\]
\[ {= \lim}_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{h}\]
\[ {= \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}}}_{} \times \frac{h}{4}\]
\[ = {= \lim_{h \to 0} - 1}_{} \times \frac{h}{2}\]
\[ = 0\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.1 [Page 3]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.1 | Q 5 | Page 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 2}{3x + 5}\]


k xn


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


Differentiate  of the following from first principle: 

− x


Differentiate of the following from first principle:

 x cos x


Differentiate  of the following from first principle:

sin (2x − 3)


tan2 


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


ex log a + ea long x + ea log a


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x3 e


\[\frac{2^x \cot x}{\sqrt{x}}\] 


sin2 


x3 ex cos 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{{10}^x}{\sin x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of f(x) = tan(ax + b), by first principle.


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×