English

Find the derivative of (5x3 + 3x – 1) (x – 1). - Mathematics

Advertisements
Advertisements

Question

Find the derivative of (5x3 + 3x – 1) (x – 1).

Sum

Solution

Let f (x) = (5x3 + 3x – 1) (x – 1)    ...(1)

Differentiating (1) with respect to x, we get

f'(x) = (5x3 + 3x - 1) (x - 1) + (5x3 + 3x - 1)(x - 1)

= f'(x) = (5.3x2 + 3 - 0) (x - 1) + (5x3 + 3x - 1) (1 - 0)

= (15x2 + 3) (x - 1) + (5x3 + 3x -1) (1)

= 15x3 + 3x - 15x2 - 3 + 5x3 + 3x - 1

∴ f'(x) = 20x3 - 15x2 + 6x - 4

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.2 [Page 313]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.2 | Q 9.2 | Page 313

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x + 1}{x + 2}\]


\[\frac{x + 2}{3x + 5}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


x ex


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan2 


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


ex log a + ea long x + ea log a


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


cos (x + a)


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


(1 +x2) cos x


x4 (3 − 4x−5)


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×