Advertisements
Advertisements
Question
x2 + x + 3
Solution
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)^2 + x + h + 3 - \left( x^2 + x + 3 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 + h^2 + 2xh + x + h + 3 - x^2 - x - 3}{h}\]
\[ = \lim_{h \to 0} \frac{h^2 + 2xh + h}{h}\]
\[ = \lim_{h \to 0} \frac{h(h + 2x + 1)}{h}\]
\[ = \lim_{h \to 0} h + 2x + 1\]
\[ = 0 + 2x + 1\]
\[ = 2x + 1\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
x2 sin x
tan 2x
ex log a + ea long x + ea log a
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 sin x
x3 ex
(x3 + x2 + 1) sin x
sin x cos x
(1 − 2 tan x) (5 + 4 sin x)
(2x2 − 3) sin x
x−4 (3 − 4x−5)
x−3 (5 + 3x)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Find the derivative of 2x4 + x.