English

X3 Ex - Mathematics

Advertisements
Advertisements

Question

x3 e

Solution

\[\text{ Let } u = x^3 ; v = e^x \]
\[\text{ Then }, u' = 3 x^2 ; v' = e^x \]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left( x^3 e^x \right) = x^3 e^x + e^x \left( 3 x^2 \right)\]
\[ = x^2 e^x \left( x + 3 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.4 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.4 | Q 2 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of `2x - 3/4`


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{1}{x^3}\]


(x + 2)3


Differentiate  of the following from first principle:

sin (x + 1)


 tan 2


x4 − 2 sin x + 3 cos x


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


ex log a + ea long x + ea log a


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


xn tan 


xn loga 


(1 − 2 tan x) (5 + 4 sin x)


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (3 − 4x−5)


x−3 (5 + 3x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×