Advertisements
Advertisements
Question
x2 ex log x
Solution
\[\text{ Let } u = x^2 ; v = e^x ; w = \log x\]
\[\text{ Then }, u' = 2x; v' = e^x , w = \frac{1}{x}\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + + uv'w + uvw'\]
\[\frac{d}{dx}\left( x^2 e^x \log x \right) = 2x e^x \log x + x^2 e^x \log x + x^2 e^x \frac{1}{x}\]
\[ = 2x e^x \log x + x^2 e^x \log x + x e^x \]
\[ = x e^x \left( 2 \log x + x \log x + 1 \right)\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
Find the derivative of `2x - 3/4`
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
3x + x3 + 33
(2x2 + 1) (3x + 2)
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(1 +x2) cos x
\[e^x \log \sqrt{x} \tan x\]
x5 (3 − 6x−9)
x−3 (5 + 3x)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
(ax + b)n (cx + d)n
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
`(a + b sin x)/(c + d cos x)`