Advertisements
Advertisements
Question
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Options
\[- \frac{4x}{\left( x^2 - 1 \right)^2}\]
\[- \frac{4x}{x^2 - 1}\]
\[\frac{1 - x^2}{4x}\]
\[\frac{4x}{x^2 - 1}\]
Solution
\[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\]
\[ = \frac{x^2 + 1}{x^2 - 1}\]
Differentiating both sides with respect to x, we get
\[\frac{dy}{dx} = \frac{\left( x^2 - 1 \right) \times \frac{d}{dx}\left( x^2 + 1 \right) - \left( x^2 + 1 \right) \times \frac{d}{dx}\left( x^2 - 1 \right)}{\left( x^2 - 1 \right)^2} \left( \text{ Quotient rule } \right)\]
\[ = \frac{\left( x^2 - 1 \right) \times \left( 2x + 0 \right) - \left( x^2 + 1 \right) \times \left( 2x - 0 \right)}{\left( x^2 - 1 \right)^2}\]
\[ = \frac{2 x^3 - 2x - 2 x^3 - 2x}{\left( x^2 - 1 \right)^2}\]
\[ = \frac{- 4x}{\left( x^2 - 1 \right)^2}\]
Hence, the correct answer is option (a).
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
x2 + x + 3
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
x4 − 2 sin x + 3 cos x
ex log a + ea long x + ea log a
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
x2 ex log x
xn loga x
(x3 + x2 + 1) sin x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x2 sin x log x
(x sin x + cos x) (x cos x − sin x)
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x−4 (3 − 4x−5)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to