Advertisements
Advertisements
Question
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
Solution
\[\text{ Let } u = \sin x - x \cos x; v = x \sin x + \cos x\]
\[\text{ Then }, u' = \cos x + x \sin x - \cos x; v' = x \cos x + \sin x - \sin x\]
\[ = x \sin x = x \cos x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{\sin x - x \cos x}{x \sin x + \cos x} \right) = \frac{\left( x \sin x + \cos x \right)x \sin x - \left( \sin x - x \cos x \right)x \cos x}{\left( x \sin x + \cos x \right)^2}\]
\[ = \frac{x^2 \sin^2 x + x \cos x \sin x - x \cos x \sin x + x^2 \cos^2 x}{\left( x \sin x + \cos x \right)^2}\]
\[ = \frac{x^2 \left( \sin^2 x + \cos^2 x \right)}{\left( x \sin x + \cos x \right)^2}\]
\[ = \frac{x^2}{\left( x \sin x + \cos x \right)^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x at x = 1.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
ex log a + ea long x + ea log a
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
xn loga x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(x sin x + cos x ) (ex + x2 log x)
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x−4 (3 − 4x−5)
(ax + b) (a + d)2
(ax + b)n (cx + d)n
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x + \cos x}{\tan x}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is