English

Mark the Correct Alternative in of the Following: If F ( X ) = X − 4 2 √ X - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 

Options

  •  \[\frac{5}{4}\] 

  • \[\frac{4}{5}\]

  •  1                 

  •  0

MCQ

Solution

\[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
\[ = \frac{1}{2}\sqrt{x} - \frac{2}{\sqrt{x}}\]
\[ = \frac{1}{2} x^\frac{1}{2} - 2 x^{- \frac{1}{2}}\]

Differentiating both sides with respect to x, we get

\[f'\left( x \right) = \frac{1}{2} \times \frac{1}{2} x^\frac{1}{2} - 1 - 2 \times \left( - \frac{1}{2} \right) x^{- \frac{1}{2} - 1} \left[ f\left( x \right) = x^n \Rightarrow f'\left( x \right) = n x^{n - 1} \right]\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{4} x^{- \frac{1}{2}} + x^{- \frac{3}{2}} \]
\[ \therefore f'\left( 1 \right) = \frac{1}{4} \times 1 + 1 = \frac{5}{4}\]

Hence, the correct answer is option (a).

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.7 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.7 | Q 2 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


Find the derivative of x–3 (5 + 3x).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of f (x) = cos x at x = 0


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


Differentiate of the following from first principle:

 x cos x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


x4 − 2 sin x + 3 cos x


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


xn tan 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x2 sin x log 


(x sin x + cos x) (x cos x − sin x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (3 − 4x−5)


\[\frac{e^x}{1 + x^2}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{x + \cos x}{\tan x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×