Advertisements
Advertisements
Question
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
Solution
\[\text{ Let } u = \sqrt{a} + \sqrt{x}; v = \sqrt{a} - \sqrt{x}\]
\[\text{ Then }, u' = \frac{1}{2\sqrt{x}}; v' = \frac{- 1}{2\sqrt{x}}\]
\[\text{ Using thequotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}} \right) = \frac{\left( \sqrt{a} - \sqrt{x} \right)\frac{1}{2\sqrt{x}} - \left( \sqrt{a} + \sqrt{x} \right)\left( \frac{- 1}{2\sqrt{x}} \right)}{\left( \sqrt{a} - \sqrt{x} \right)^2}\]
\[ = \frac{\sqrt{a} - \sqrt{x} + \sqrt{a} + \sqrt{x}}{2\sqrt{x} \left( \sqrt{a} - \sqrt{x} \right)^2}\]
\[ = \frac{2\sqrt{a}}{2\sqrt{x} \left( \sqrt{a} - \sqrt{x} \right)^2}\]
\[ = \frac{\sqrt{a}}{\sqrt{x} \left( \sqrt{a} - \sqrt{x} \right)^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
x2 + x + 3
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
− x
\[\tan \sqrt{x}\]
3x + x3 + 33
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
x2 sin x log x
logx2 x
\[e^x \log \sqrt{x} \tan x\]
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
(ax2 + cot x)(p + q cos x)
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.